Parameterizing Generalized Laguerre Functions to Compute the Inverse Laplace Transform of Fractional Order Transfer Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Laplace Transform Based on Laguerre Functions

In this paper, we present a fast algorithm which evaluates a discrete Laplace transform with N points at M arbitrarily distributed points in C(N + M) work, where C depends only on the precision required. Our algorithm breaks even with the direct calculation at N = M = 20, and achieves a speedup of 1000 with 10000 points. It is based on a geometric divide and conquer strategy, combined with the ...

متن کامل

The Hilbert Transform Ofthe Generalized Laguerre and Hermiteweight Functions

Explicit formulae are given for the Hilbert transform Z R ? w(t)dt=(t ? x), where w is either the generalized Laguerre weight function w(t) = 0 if t 0, w(t) = t e ?t if 0 < t < 1, and > ?1, x > 0, or the Hermite weight function w(t) = e ?t 2 , ?1 < t < 1, and ?1 < x < 1. Furthermore, numerical methods of evaluation are discussed based on recursion, contour integration and saddle-point asymptoti...

متن کامل

Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems

In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results  how that the simplicity and efficiency of this method.

متن کامل

Laplace Transform of Fractional Order Differential Equations

In this article, we show that Laplace transform can be applied to fractional system. To this end, solutions of linear fractional-order equations are first derived by a direct method, without using Laplace transform. Then the solutions of fractional-order differential equations are estimated by employing Gronwall and Hölder inequalities. They are showed be to of exponential order, which are nece...

متن کامل

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MENDEL

سال: 2018

ISSN: 2571-3701,1803-3814

DOI: 10.13164/mendel.2018.1.079